The Finite Square Well
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THINK FIRST! The first step in any problem is to gather together all your qualitative knowledge about
the situation before you start working out any quantitative details. This is especially true in @M, where
the “blind calculation” approach is often not only a waste of effort but actually intractable!

SYMMETRY: In this case we save ourselves a mind-bogglingly difficult mathematical nightmare by
making a few simple observations about SYMMETRY: the potential V' (z) is symmetric about & = 0; this
implies that the probability of finding the particle on one side of the well must be equal to the probability
of finding it on the other side. Since the wavefunction v (z) is squared to get this probability, it follows
that ¥ (z) can be either an EVEN function of z [¢(—z) = 1(z)] or an oDD function of z [¢(—z) = —(z)].
This places lots of constraints on ¥ (z) for which we will soon be grateful.

BOUND or UNBOUND? A potential well generally has bound states of well-defined energy F < 0 unless
the mass is too small (see below). There is also a continuum of unbound states with £ > 0, whose

behaviour we may also want to examine. [For instance, the classical particle will “pass over” the well and
continue on the other side every time; this will not be the case for the QM result!] We will start with the
bound state (I < 0). If ¢(z) is localized around the potential well, then to be normalizable it must obey
P(x) mjio 0. [Moreover, we certainly expect 1» — 0 as we get further into regions where the classical

particle cannot penetrate at all due to its inadequate energy!] Our first guess for such functions is always

the decaying exponential function, here ‘ P, (z) = Ae?” ‘ (2) for region I (—oo <x< —%) [Remember,

2 = —|z| in this region.] Since we are always free to choose the overall phase of 1(z) arbitrarily

[multiplying by a constant factor of €® has no effect on the physics], we may do so immediately by

choosing that ‘ A is real and positive ‘ In this case the {EOVDEg} symmetry requirement gives two

possible solutions for region 3 (% <z < oo): ey (x) = £Ae™" | where the + sign is for the

symmetric (EVEN) solution and the — sign is for the antisymmetric (0DD) solution.

On region 2 (—% <z < %) we expect some sort of oscillatory function, for which the obvious {EOVDEg}

choices are | 1,4 (z) = B {—I_C?S} (kz) | (3) where the — sign is chosen for the (oDD) sin function for the
—sin

following reason:

BOUNDARY CONDITIONS: We must always satisfy the matching condition for the wavefunction [¢

must be continuous] and the matching condition for its spatial derivative [04/0x must also be continuous

(except where the potential is infinite)] at the boundaries z12 = —% and x33 = —I—%. The first matching
condition immediately implies that ), must be positive at 2, since we chose v, positive. For the odd
function this mandates the negative sign in Eq. (3) above. If we now explicitly apply the matching
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magnitude of i at the boundary. The matching condition for the derivative gives

/
condition for %) at the boundaries, we get {COS} (k—L) = A (4) where ‘ A= Ae=2L/2 |is the
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the squares of Eqs. (4) and (5) gives

(5). Dividing Eq. (5) by Eq. (4) gives
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APPLYING the SCHRODINGER EQUATION:

How do these guesses fare with our original equation? On

2.2
regions I and 3 we get — 5 1 = 1, which ensures | ha = vV =2mE | (8) since £/ < 0 is the same
m
27.2
throughout. On region 2 we have ey — Vorp, = Ep, or | hk = +/2m(Vo+ E) | (9). Substituting
m
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these values for av and k back into Eqgs. (7) and (6) gives | B = A V1 E (10) and
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(11), respectively.

Equation (11) implies restrictions on the allowed values of E. This is anticipated [remember, F is
quantized] but you may be surprised to find a transcendental equation governing E. There is no

algebraic solution to Eq. (11)! [Actually, Eq. (11) is two transcendental equations for {EOVDEg} V. Asn

mL2(V, + E)

57,2 and

and F, increase, we alternate between EVEN and oDD solutions.] If we define | 4
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graphically for the allowed values of 6,, (and therefore F,). For a detailed description of how to do this,
see pp. 156-162 of French & Taylor, An Introduction to Quantum Physics.

then Eq. (11) reads , which one can plot up and solve

ARE THERE ANY BOUND STATES? Under what circumstances does Eq. (11) have a solution? On the
one hand, the general rule that confinement costs energy would seem to dictate that a narrower well
must be deeper in order to “hang on to” a particle: smaller L (or m) should require larger V,. The
definition of 4, reflects this aspect of the problem: 6, is smaller for smaller V, and/or smaller mL2.
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intersect somewhere, no matter how small 6, is. Thus there is always at least one (even) bound state for
this potential! The apparent paradox is resolved when we realize that the exponentially decaying “tails”
of 1 (z) penetrate deeper and deeper into the classically forbidden region as 6, gets smaller and smaller,
until the region where 1(z) is sinusoidal (inside the well) becomes a negligible point at the centre of a
wavefunction that decays away exponentially from a central cusp. The stability of this solution is

while

However, tan6 { , so that the two must

extremely sensitive to the “flatness” of V = 0 in regions far from the well, for obvious reasons.

An interesting limit is obtained by allowing the well to shrink (L — 0) while holding constant the ratio
L%V, (so that V, — oo in compensation). This is called the DELTA FUNCTION POTENTIAL.

IS THAT THE WHOLE STORY??
within a normalization constant A which can be found by applying / P pde = 1 if we need it (e.g. if

After all this work, what have we learned? We know 1 everywhere to

we want to calculate expectation values) and we have what we need to find F,, (and therefore k,, and a,)
for the stationary states allowed in this potential well. It would be nice to have a tidy algebraic solution,
but even simple problems are not necessarily nice! If you want exact solutions, you will have to solve the



transcendental equations each time you specify the parameters V,, L and m which govern the physics of
this problem. However, it is possible to make many qualitative obervations (see class notes) based on
simple right-hemisphere graphical arguments. We may also examine some LIMITING CASES:
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DEEPLY BOUND STATES: If % & V,, the lowest few eigenstates will have energies F,, that are

m
only a little above the bottom of the well [F,, = =V, + ¢,,, where ¢,, < V;]. Then Eq. (11) reads

. 4+ tan d, 1 62 . — tan 0
approximately ot 0~ 7 1- Y7 or, even more approximately, 4+ cot 0~ o | You

may want to play with this approximation to see the spectrum of deeply-bound states. Note that

; tan
0 v L, 00,50 in the limit of the INFINITE SQUARE WELL the solutions are simply { ¢ } =01
° co
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which is satisfied for| 6, = n§ . Check that this agrees with the formula you know already, bearing in

mind that here we have defined the top of the well to have V =10....

UNBOUND STATES: In all the equations above we have assumed F < 0 (bound states). What happens
when E > 07 Taking the equations at face value, we would conclude that « is imaginary, meaning that
our initial assumption of exponentially decaying solutions outside the well was incorrect and that 4 must
be sinusoidal (oscillatory) everywhere. This is precisely the case. See how far you can get assuming that

what we have written so far still applies. ...



