
The Finite Square Well0{L2 06V1 2 3L2 -�V� x Solutions of the time-independent Schr�odinger Equation fora �nite square well potential,� �h22m @2 @x2 + V (x) = E ; V (x) = ( �V�; jxj � L20; jxj > L2 (1)reveal many of the qualitative characteristics of quantum me-chanical (QM) systems.THINK FIRST! The �rst step in any problem is to gather together all your qualitative knowledge aboutthe situation before you start working out any quantitative details. This is especially true in QM, wherethe \blind calculation" approach is often not only a waste of e�ort but actually intractable!SYMMETRY: In this case we save ourselves a mind-bogglingly di�cult mathematical nightmare bymaking a few simple observations about symmetry: the potential V (x) is symmetric about x = 0; thisimplies that the probability of �nding the particle on one side of the well must be equal to the probabilityof �nding it on the other side. Since the wavefunction  (x) is squared to get this probability, it followsthat  (x) can be either an even function of x [ (�x) =  (x)] or an odd function of x [ (�x) = � (x)].This places lots of constraints on  (x) for which we will soon be grateful.BOUND or UNBOUND? A potential well generally has bound states of well-de�ned energy E < 0 unlessthe mass is too small (see below). There is also a continuum of unbound states with E > 0, whosebehaviour we may also want to examine. [For instance, the classical particle will \pass over" the well andcontinue on the other side every time; this will not be the case for the QM result!] We will start with thebound state (E < 0). If  (x) is localized around the potential well, then to be normalizable it must obey (x) �!jxj!1 0. [Moreover, we certainly expect  ! 0 as we get further into regions where the classicalparticle cannot penetrate at all due to its inadequate energy!] Our �rst guess for such functions is alwaysthe decaying exponential function, here  1 (x) = Ae�x (2) for region 1 ��1 < x < �L2 �. [Remember,x = �jxj in this region.] Since we are always free to choose the overall phase of  (x) arbitrarily[multiplying by a constant factor of ei� has no e�ect on the physics], we may do so immediately bychoosing that A is real and positive . In this case the nevenodd o symmetry requirement gives twopossible solutions for region 3 �L2 < x <1�:  3� (x) = �Ae��x where the + sign is for thesymmetric (even) solution and the � sign is for the antisymmetric (odd) solution.On region 2 ��L2 < x < L2 � we expect some sort of oscillatory function, for which the obvious nevenodd ochoices are  2� (x) = B �+cos� sin� (kx) (3) where the � sign is chosen for the (odd) sin function for thefollowing reason:BOUNDARY CONDITIONS: We must always satisfy the matching condition for the wavefunction [ must be continuous] and the matching condition for its spatial derivative [@ =@x must also be continuous(except where the potential is in�nite)] at the boundaries x12 � �L2 and x23 � +L2 . The �rst matchingcondition immediately implies that  2 must be positive at x12, since we chose  1 positive. For the oddfunction this mandates the negative sign in Eq. (3) above. If we now explicitly apply the matchingcondition for  at the boundaries, we get �cossin��kL2 � = A0B (4) where A0 � Ae��L=2 is themagnitude of  at the boundary. The matching condition for the derivative gives



�+ sin� cos��kL2 � = �k A0B (5). Dividing Eq. (5) by Eq. (4) gives �+ tan� cot��kL2 � = �k (6). Addingthe squares of Eqs. (4) and (5) gives B2 = A02 1 + �2k2! (7).APPLYING the SCHR�ODINGER EQUATION: How do these guesses fare with our original equation? Onregions 1 and 3 we get ��h2�22m  = E , which ensures �h� = p�2mE (8) since E < 0 is the samethroughout. On region 2 we have �h2k22m  2 � V� 2 = E 2 or �hk = q2m(V�+ E) (9). Substitutingthese values for � and k back into Eqs. (7) and (6) gives B = A0s V�V� + E (10) and�+ tan� cot�0@smL22�h2 pV� + E1A = s �EV� +E (11), respectively.Equation (11) implies restrictions on the allowed values of E. This is anticipated [remember, E isquantized] but you may be surprised to �nd a transcendental equation governing E. There is noalgebraic solution to Eq. (11)! [Actually, Eq. (11) is two transcendental equations for nevenodd o  . As nand En increase, we alternate between even and odd solutions.] If we de�ne � � smL2(V� +E)2�h2 and�� � smL2V�2�h2 then Eq. (11) reads �+ tan� cot� � = s�2��2 � 1 , which one can plot up and solvegraphically for the allowed values of �n (and therefore En). For a detailed description of how to do this,see pp. 156-162 of French & Taylor, An Introduction to Quantum Physics.ARE THERE ANY BOUND STATES? Under what circumstances does Eq. (11) have a solution? On theone hand, the general rule that con�nement costs energy would seem to dictate that a narrower wellmust be deeper in order to \hang on to" a particle: smaller L (or m) should require larger V�. Thede�nition of �� re
ects this aspect of the problem: �� is smaller for smaller V� and/or smaller mL2.However, tan �( ! 0 as � ! 0!1 as � ! �=2 while s�2��2 � 1( !1 as � ! 0! 0 as � ! �� , so that the two mustintersect somewhere, no matter how small �� is. Thus there is always at least one (even) bound state forthis potential! The apparent paradox is resolved when we realize that the exponentially decaying \tails"of  (x) penetrate deeper and deeper into the classically forbidden region as �� gets smaller and smaller,until the region where  (x) is sinusoidal (inside the well) becomes a negligible point at the centre of awavefunction that decays away exponentially from a central cusp. The stability of this solution isextremely sensitive to the \
atness" of V = 0 in regions far from the well, for obvious reasons.An interesting limit is obtained by allowing the well to shrink (L! 0) while holding constant the ratioL2V� (so that V�!1 in compensation). This is called the delta function potential.IS THAT THE WHOLE STORY?? After all this work, what have we learned? We know  everywhere towithin a normalization constant A which can be found by applying Z 1�1  � dx = 1 if we need it (e.g. ifwe want to calculate expectation values) and we have what we need to �nd En (and therefore kn and �n)for the stationary states allowed in this potential well. It would be nice to have a tidy algebraic solution,but even simple problems are not necessarily nice! If you want exact solutions, you will have to solve the



transcendental equations each time you specify the parameters V�, L and m which govern the physics ofthis problem. However, it is possible to make many qualitative obervations (see class notes) based onsimple right-hemisphere graphical arguments. We may also examine some limiting cases:DEEPLY BOUND STATES: If �h2�22mL2 � V�, the lowest few eigenstates will have energies En that areonly a little above the bottom of the well [En = �V� + "n, where "n � V�]. Then Eq. (11) readsapproximately �+ tan� cot� � � ���  1� 12 �2�2�! or, even more approximately, �� tan+ cot� � � ��� . Youmay want to play with this approximation to see the spectrum of deeply-bound states. Note that�� �!V�!1 1, so in the limit of the infinite square well the solutions are simply �tancot� � = 0 ,which is satis�ed for �n = n�2 . Check that this agrees with the formula you know already, bearing inmind that here we have de�ned the top of the well to have V = 0: : : .UNBOUND STATES: In all the equations above we have assumed E < 0 (bound states). What happenswhen E > 0? Taking the equations at face value, we would conclude that � is imaginary, meaning thatour initial assumption of exponentially decaying solutions outside the well was incorrect and that  mustbe sinusoidal (oscillatory) everywhere. This is precisely the case. See how far you can get assuming thatwhat we have written so far still applies: : : .


