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Rod of Charge

As an exercise in the “brute force” integration of
Coulomb’s Law (unavoidable in most cases),
here is one way to find the electric field due to a
uniformly charged, skinny rod of finite length L:

If the total charge Q is uniformly distributed
along the rod, then the charge per unit length
is

λ =
Q

L
. (1)
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We want to evaluate the electric field ~E at an
arbitrary “test point” in space. Such a point can
be characterized completely by its perpendicular
distance r from the rod and its distance h up from
the bottom end of the rod, measured parallel to
the rod, as shown. We choose to look at the rod
and the point in their common plane.

Then we pick an arbitrarily position a distance z
up from the bottom end of the rod, as shown. A
small slice of the rod (width dz) at that position
contains a “charge element” dq = λ dz which con-
tributes d~E to the electric field vector ~E at the
test point. Coulomb’s Law says that d~E points
away from the charge element (assuming positive
charge) and has a magnitude

dE =
kEλ dz

R2
(2)

where
R =

√
r2 + (z − h)2 (3)

is the distance from the charge element to the
test point. In general d~E makes an angle θ with
the direction r̂ perpendicular to the rod. If we
define the ẑ direction to be “up” parallel to the
rod, then we can separate d~E until its r and z
components:

dEr = dE cos θ (4)

dEz = −dE sin θ (5)

To integrate these equations we need to convert
all variables to match the differential (over which
we integrate). We could use Eq. (3) to express R
in terms of z (where r and h are constants) and
use

cos θ =
r

R
(6)

sin θ =
(z − h)

R
(7)

but this would leave us with integrals that cannot
be solved by inspection.



Physics 108 — Jess H. Brewer 2

If we want to solve this problem without refer-
ence to external aids (like tables of integrals), it
is better to convert into angles and trigonometric
functions as follows:

Equation (6) can be rewritten

1

R2
=

cos2 θ

r2
(8)

and since
z − h = r tan θ , (9)

giving

dz = r sec2 θ dθ =
r dθ

cos2 θ
, (10)

we can write Eq. (2) as

dE = kEλ

(
cos2 θ

r2

)(
r dθ

cos2 θ

)
=
kEλ

r
dθ (11)

and from that, Eqs. (4) and (5), respectively, as

dEr =
kEλ

r
cos θ dθ =

kEλ

r
du (12)

where u ≡ sin θ, and

dEz = −kEλ
r

sin θ dθ =
kEλ

r
dv (13)

where v ≡ cos θ.

Integrating these differentials is trivial; we are left
with just the differences between u (or v) at the
limits of integration (the top and bottom of the
rod):

Er =
kEλ

r


 (L− h)√

r2 + (L− h)2
+

h√
r2 + h2


 (14)

(note that u is negative at the bottom) and

Ez = kEλ


 1√

r2 + (L− h)2
− 1√

r2 + h2


 (15)

These equations express a completely general so-
lution to this problem.

Let’s check to see what these give for the field
directly out from the midpoint of the rod — i.e.
for h = L/2:

Er =
kEλ

r


 L/2√

r2 + L2/4
+

L/2√
r2 + L2/4




=
kEλ

r

L√
r2 + L2/4

(16)

and

Ez = kEλ


 1√

r2 + L2/4
− 1√

r2 + L2/4




= 0 . (17)

Let’s also check to see what we get for Er (at the
midpoint) very far from the rod (r � L):

Er −→r→∞
kEλL

r2
=
kEQ

r2
(18)

(i.e. Coulomb’s Law)
√

and very close to the rod (r � L):

Er −→r→0

2kEλ

r
. (19)

The last result can be used as the field due to an
infinitely long uniform line of charge. But there
is a much easier way to obtain it. . . .


