
Boltzmann Distribution Revisited

Looked at as a the probability 
of a state with a given energy 
being occupied at different 
temperatures, 
the Boltzmann distribution 
only starts to “get big” when 

              T > ε/kB.



Averaging over the Boltzmann Distribution

Looked at as a probability
distribution over energy 
at a fixed temperature, 
the Boltzmann distribution 
is just an exponential decay.
When we normalize this 
and use it to find the mean 
energy <ε>, the result is 
just    <ε> = t = kBT.

<ε> = t = kBT



Equipartition Theorem

Although the average potential energy of a gas molecule in the 
atmosphere (for instance) is, by the preceding analysis, just  t, 
the Equipartition Theorem states that the average energy 
associated with each degree of freedom of a system is  ½ t.  
The discrepancy arises because most “degrees of freedom” 
(like the x, y and z components of the velocity of a gas atom) 
have a range from -∞ to +∞ (rather than from 0 to +∞ like for 
the height of a gas molecule in the atmosphere) and also 
appear squared in the energy.   This adds a factor of ½.  
Proving this is nontrivial, so I will spare you the details.

It follows immediately that the mean energy U of an ideal gas 
of N particles in thermal equilibrium at temperature  t  is just

U = 3/2 N t
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Assume specular,
elastic collisions 
with the walls 
(like on a perfect 
pool table).  
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Momentum transferred to 
wall on right at each collision
 is       Δpx = 2 m vx.

Time between collisions with 
that wall (2 transits of Lx) is
            Δt = 2 Lx /vx

Average force (momentum transfer per unit time) due to 1 particle 
Fx

1 = Δpx / Δt = m vx
2 /Lx .  This force is spread over the area A of the 

wall on the right for a pressure (force per unit area) P1 = Fx
1/A  or  

P1 = m vx
2 /ALx .   But  ALx = V,  the volume of the box.  Thus 

P1 = m vx
2 /V
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We have a time-averaged 
pressure   P1 = m vx

2 /V  
due to one particle bouncing 
back and forth at  vx.   Now 
let's calculate the average 
value of  vx

2  at a given 
temperature  t.

The average values of  <vx
2>,  <vy

2>  and  <vz
2>  are surely the same 

by symmetry, and the sum of all three is just  <v 2>,  so we can take 
 <vx

2> = ⅓ <v 2>,  giving   <P1> = ⅓ m <v 2> /V = ⅔ <½ m v 2> /V  or  
<P1>V = ⅔ <ε>.   This is the pressure due to one such particle.  
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But  N<ε>  is just (on average) the total kinetic energy of 
the ideal gas,  U = 3/2 N t,  giving 

PV = N t
the Ideal Gas Law!

The pressure due to one such 
particle is  <P1>V = ⅔ <ε>.    
If there are N such particles 
bouncing around, each one  
contributes the same  <P1>, 
giving a net pressure P 
obeying   PV = ⅔ N <ε>.   


