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Boltzmann Distribution Revisited
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Temperature (in units of E/k )

{ Looked at as a the probability
{ of astate with a given energy
| being occupied at different

| temperatures,

{ the Boltzmann distribution

| only starts to "get big" when

T> glkg.




Boltzmann Distribution

Averaging over the Boltzmann Distribution
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Energy (in units of kK_T)

Looked at as a probability
distribution over energy

at a fixed temperature,
the Boltzmann distribution
is just an exponential decay.
When we normalize this

and use it to find the mean
energy <&>, the result is

just | <€>=1T=k,T.




Equipartition Theorem

Although the average potential energy of a gas molecule in the
atmosphere (for instance) is, by the preceding analysis, just T,
the Equipartition Theorem states that the average energy
associated with each degree of freedom of a systemis "2 1.
The discrepancy arises because most "degrees of freedom”
(like the x, y and z components of the velocity of a gas atom)
have a range from - to +e (rather than from O to +e like for
the height of a gas molecule in the atmosphere) and also

appear squared in the energy. This adds a factor of %
Proving this is nontrivial, so T will spare you the details.

It follows immediately that the mean energy U of an ideal gas
of N particles in thermal equilibrium at temperature T is just

U=32N7t




One particle

PRESSURE

Assume specular,
elastic collisions
with the walls
(like on a perfect
pool table).




PRESSURE

Momentum transferred to
wall on right at each collision
1S Ap, =2 myv,.
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One particle, ~ _ Time between collisions with
elastic collisions T~ . N that wall (2 transits of L,) is
At=2L, v
- L, - XX

Average force (momentum transfer per unit time) due to 1 particle
F'=Ap,/At=mv,2/L,. This force is spread over the area A of the

wall on the right for a pressure (force per unit area) P, = F,'/A or
P,=mv,2/AL,. But AL,=YV, the volume of the box. Thus

P,=mvz2/V




PRESSURE

We have a time-averaged
pressure P;=mv2/V

due to one particle bouncing
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v back and forth at v,. Now
One particle, T~ let's calculate the average
elastic collisions =~ value of v,2 at a given
=~ X
- L, ~ temperature T.

The average values of <v,*>, <v,*> and <v,*> are surely the same

by symmetry, and the sum of all three is just <v2>, so we can take
v 2> =Ya<v?>, giving <P >=%m<v?>/V=%<Vamv?>/V or

<P,>V=%;<€> This is the pressure due to one such particle.



PRESSURE

The pressure due to one such
particle is <P,>V =% <€>,

If there are N such particles
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% bouncing around, each one
One particle, S~ contributes the same <P,>,
elastic collisions ~ ~ _ | giving a net pressure P
B L, _ obeying PV=% N <é&>,

But N<&> is just (on average) the total kinetic energy of
the ideal gas, U=32 N1, giving

IPV=N1 |
the Ideal Gas Law!




