
AC RC CIRCUITS

A useful introduction to AC circuits can be devel-

oped using only resistance R and capacitance C.

Picture an RC circuit driven by a sinusoidal voltage

E(t) = E0 cos(ωt) = < eiωt

where < signifies “the real part of” a complex quan-

tity like eiθ = cos θ + i sin θ. The imaginary part is

written (e.g.) = eiθ = sin θ.

(Physical quantities like current or voltage don’t ac-

tually have a measurable imaginary part, of course.)

The voltage amplitude E0 is taken to be pure real.



An RC circuit driven

by an AC voltage:

Kirchhoff’s rule
∑
i∆Vi = 0 gives

E − Q
C
−R dQ

dt
= 0 . (1)

The only plausible “steady-state” motion is for Q to

oscillate at the same frequency as the driving volt-

age. We express this expectation as a trial solution:

Q(t) = Q0e
iωt . (2)



Let’s see if this trial solution (2) “works” [satisfies

the differential equation]. The complex exponential

form is easy to differentiate: each time derivative of

Q(t) just “pulls down” another factor of iω. Thus

E0e
iωt − 1

C
Q0e

iωt − iωRQ0e
iωt = 0 , (3)

from which we can remove the common factor eiωt

and do a little algebra to obtain

Q0 =
E0/R

1/RC + iω
=
E0/R

λ+ iω
(4)

where

λ ≡ 1

RC
≡ 1

τ
. (5)



Now, the charge on a capacitor can’t be measured
directly. What we want to know is the current I ≡ Q̇.
Since the entire time dependence of Q is in the factor
eiωt, we have trivially

I(t) = iωQ(t) = I0e
iωt (6)

where

I0 = iωQ0 =
iωE0/R

λ+ iω
=

E0/R

1− iλ/ω =
E0

R− i/ωC . (7)

Since E, Q and I all have the same time dependence
except for differences of phase encoded in the com-
plex amplitudes Q0 and I0, we can think in terms of
an effective resistance Reff such that

E = IReff or Reff =
E0

I0
. (8)



With a little more algebra we can write the effective

resistance in the form

Reff = R− iXC (9)

where

XC ≡
1

ωC
(10)

is the capacitive reactance of the circuit. This is a

quantity that “acts like” (and has the units of) a

resistance — just like R, the first term in Reff.



The current through the circuit cannot be different

in different places (due to charge conservation) and

follows the time dependence of the driving voltage

but (because Reff is generally complex) is not gen-

erally in phase with it, nor with the voltage drop

across C:

−∆ER = IR , but

−∆EC = −iIXC . (11)



The Phase Circle

shows the voltage

drops in “complex

phase space” as

vectors that rotate

at a constant

frequency ω.

The voltage across the capacitor lags behind that

across the resistor by an angle of π/2.

At any instant the actual, measurable value of any
voltage is just its real part — i.e. the projection of
its complex vector onto the real axis.



Power

From the point of view of the power supply,∗ the

circuit is a “black box” that “resists” the applied

voltage with a weird “back EMF” (Eback) given by

Reff times the current I — i.e. by the sum of both

terms in Eq. (11) or the sum of the two vectors in

the Phase Circle.

∗Please forgive my anthropomorphization of circuit elements;
these metaphors help me remember their “behaviour”.



The power dissipated in the circuit is the product

of the real part of the applied voltage† and the real

part of the resultant current‡

P (t) = <E × <I = <
(
E0e

iωt
)
<
(
I0e

iωt
)

= E2
0<

(
1

Reff

)
cos2(ωt) . (12)

which oscillates at a frequency 2ω between zero and

its maximum value

Pmax = E2
0<

(
1

Reff

)
(13)

†The imaginary voltage component doesn’t generate any
power.
‡Neither does the imaginary part of the current.



so that the average power drain is§

〈P 〉 =
1

2
E2

0

[
R

R2 +X2
C

]
= Erms Irms cosφ (14)

where Erms = E0/
√

2, Irms is the root-mean-square

current in the circuit,

cosφ =
R

Z
(15)

is the “power factor” of the RC circuit and

Z ≡
√
R2 +X2

C (16)

is the impedance of the circuit.

§I have used
1

x+ iy
=

x− iy
x2 + y2

to obtain the real part of 1/Reff.



Expressing the average power dissipation in this form

allows one to think of an AC RC circuit the same

way as a DC RC circuit with the power factor as a

sort of “fudge factor”.

This all gets a lot more interesting when we add the

“inertial” effects of an inductance to our circuit.

Stay tuned.


