AC RC CIRCUITS

A useful introduction to AC circuits can be developed using only resistance R and capacitance C. Picture an $R C$ circuit driven by a sinusoidal voltage

$$
\mathcal{E}(t)=\mathcal{E}_{0} \cos (\omega t)=\Re e^{i \omega t}
$$

where \Re signifies "the real part of" a complex quantity like $e^{i \theta}=\cos \theta+i \sin \theta$. The imaginary part is written (e.g.) $\Im e^{i \theta}=\sin \theta$.
(Physical quantities like current or voltage don't actually have a measurable imaginary part, of course.)

The voltage amplitude \mathcal{E}_{0} is taken to be pure real.

An $R C$ circuit driven by an AC voltage:

Kirchhoff's rule $\quad \sum_{i} \Delta V_{i}=0$ gives

$$
\begin{equation*}
\mathcal{E}-\frac{Q}{C}-R \frac{d Q}{d t}=0 . \tag{1}
\end{equation*}
$$

The only plausible "steady-state" motion is for Q to oscillate at the same frequency as the driving voltage. We express this expectation as a trial solution:

$$
\begin{equation*}
Q(t)=Q_{0} e^{i \omega t} \tag{2}
\end{equation*}
$$

Let's see if this trial solution (2) "works" [satisfies the differential equation]. The complex exponential form is easy to differentiate: each time derivative of $Q(t)$ just "pulls down" another factor of $i \omega$. Thus

$$
\begin{equation*}
\mathcal{E}_{0} e^{i \omega t}-\frac{1}{C} Q_{0} e^{i \omega t}-i \omega R Q_{0} e^{i \omega t}=0 \tag{3}
\end{equation*}
$$

from which we can remove the common factor $e^{i \omega t}$ and do a little algebra to obtain

$$
\begin{equation*}
Q_{0}=\frac{\mathcal{E}_{0} / R}{1 / R C+i \omega}=\frac{\mathcal{E}_{0} / R}{\lambda+i \omega} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda \equiv \frac{1}{R C} \equiv \frac{1}{\tau} . \tag{5}
\end{equation*}
$$

Now, the charge on a capacitor can't be measured directly. What we want to know is the current $I \equiv \dot{Q}$. Since the entire time dependence of Q is in the factor $e^{i \omega t}$, we have trivially

$$
\begin{equation*}
I(t)=i \omega Q(t)=I_{0} e^{i \omega t} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{0}=i \omega Q_{0}=\frac{i \omega \mathcal{E}_{0} / R}{\lambda+i \omega}=\frac{\mathcal{E}_{0} / R}{1-i \lambda / \omega}=\frac{\mathcal{E}_{0}}{R-i / \omega C} \tag{7}
\end{equation*}
$$

Since \mathcal{E}, Q and I all have the same time dependence except for differences of phase encoded in the complex amplitudes Q_{0} and I_{0}, we can think in terms of an effective resistance $R_{\text {eff }}$ such that

$$
\begin{equation*}
\mathcal{E}=I R_{\mathrm{eff}} \quad \text { or } \quad R_{\mathrm{eff}}=\frac{\mathcal{E}_{0}}{I_{0}} . \tag{8}
\end{equation*}
$$

With a little more algebra we can write the effective resistance in the form

$$
\begin{equation*}
R_{\text {eff }}=R-i X_{C} \tag{9}
\end{equation*}
$$

where

$$
\begin{equation*}
X_{C} \equiv \frac{1}{\omega C} \tag{10}
\end{equation*}
$$

is the capacitive reactance of the circuit. This is a quantity that "acts like" (and has the units of) a resistance - just like R, the first term in $R_{\text {eff }}$.

The current through the circuit cannot be different in different places (due to charge conservation) and follows the time dependence of the driving voltage but (because $R_{\text {eff }}$ is generally complex) is not generally in phase with it, nor with the voltage drop across C :

$$
\begin{align*}
& -\Delta \mathcal{E}_{R}=I R, \quad \text { but } \\
& -\Delta \mathcal{E}_{C}=-i I X_{C} . \tag{11}
\end{align*}
$$

The Phase Circle shows the voltage drops in "complex phase space" as vectors that rotate at a constant frequency ω.

The voltage across the capacitor lags behind that across the resistor by an angle of $\pi / 2$.

At any instant the actual, measurable value of any voltage is just its real part - i.e. the projection of its complex vector onto the real axis.

Power

From the point of view of the power supply,* the circuit is a "black box" that "resists" the applied voltage with a weird "back $\mathcal{E} \mathcal{M} \mathcal{F}^{\prime}$ ($\mathcal{E}_{\text {back }}$) given by $R_{\text {eff }}$ times the current I-i.e. by the sum of both terms in Eq. (11) or the sum of the two vectors in the Phase Circle.
*Please forgive my anthropomorphization of circuit elements; these metaphors help me remember their "behaviour".

The power dissipated in the circuit is the product of the real part of the applied voltage ${ }^{\dagger}$ and the real part of the resultant current \ddagger

$$
\begin{align*}
P(t) & =\Re \mathcal{E} \times \Re I=\Re\left(\mathcal{E}_{0} e^{i \omega t}\right) \Re\left(I_{0} e^{i \omega t}\right) \\
& =\mathcal{E}_{0}^{2} \Re\left(\frac{1}{R_{\text {eff }}}\right) \cos ^{2}(\omega t) \tag{12}
\end{align*}
$$

which oscillates at a frequency 2ω between zero and its maximum value

$$
\begin{equation*}
P_{\max }=\mathcal{E}_{0}^{2} \Re\left(\frac{1}{R_{\mathrm{eff}}}\right) \tag{13}
\end{equation*}
$$

${ }^{\dagger}$ The imaginary voltage component doesn't generate any power.
${ }^{\ddagger}$ Neither does the imaginary part of the current.
so that the average power drain is§

$$
\begin{equation*}
\langle P\rangle=\frac{1}{2} \mathcal{E}_{0}^{2}\left[\frac{R}{R^{2}+X_{C}^{2}}\right]=\mathcal{E}_{\mathrm{rms}} I_{\mathrm{rms}} \cos \phi \tag{14}
\end{equation*}
$$

where $\mathcal{E}_{\mathrm{rms}}=\mathcal{E}_{0} / \sqrt{2}, I_{\mathrm{rms}}$ is the root-mean-square current in the circuit,

$$
\begin{equation*}
\cos \phi=\frac{R}{Z} \tag{15}
\end{equation*}
$$

is the "power factor" of the $R C$ circuit and

$$
\begin{equation*}
Z \equiv \sqrt{R^{2}+X_{C}^{2}} \tag{16}
\end{equation*}
$$

is the impedance of the circuit.
${ }^{\delta_{I}}$ have used $\frac{1}{x+i y}=\frac{x-i y}{x^{2}+y^{2}}$ to obtain the real part of $1 / R_{\text {eff }}$.

Expressing the average power dissipation in this form allows one to think of an AC $R C$ circuit the same way as a DC $R C$ circuit with the power factor as a sort of "fudge factor".

This all gets a lot more interesting when we add the "inertial" effects of an inductance to our circuit. Stay tuned.

